
AstréeA

From Research To Industry

 Dr.-Ing. Stephan Wilhelm, AbsInt GmbH

Workshop on Static Analysis of Concurrent Software

Edinburgh, 2016

2

AbsInt Angewandte Informatik GmbH
 Provides advanced development tools for embedded systems and

tools for validation, verification, and certification of safety-critical
software.

 Founded in February 1998 by six researchers of Saarland
University, Germany, from the group of programming languages
and compiler construction of Prof. Dr. Dr. h.c. mult. R. Wilhelm.

 Privately held by the founders.

 Headquarters in Saarbrücken, Germany.

 Our customers come from all industry sectors
where safety-relevant software is used:
 Aerospace & defense

 Automotive

 Nuclear & wind energy

 Railway control

 Medical devices

Astrée for C

Sound static analysis based on
abstract interpretation to prove
absence of runtime errors.

Astrée detects:
 Array index out of bounds

 Int/float division by 0

 Invalid pointer dereferences

 Arithmetic overflows and wrap-arounds

 Floating point overflows and invalid operations (Inf and NaN)

 Uninitialized variables

 Data races, inconsistent locking

 + Floating-point rounding errors taken into account

 + User-defined assertions, unreachable code, non-terminating loops

 + Supports MISRA, CERT, CWE

3

AstréeA

ASTRÉE(A) Timeline

4

Practical Use

Various industries
…

2001 2016 2009

ASTRÉE

ENS Paris

ASTRÉEA

ENS Paris

Astrée for C

AbsInt

15.10

AbsInt

Subjects

of this talk

PRODUCT INTEGRATION

5

The Average Industrial User

 Is not an expert C programmer or computer scientist!

Often has a background in testing and doesn’t know the software
under analysis.

Separate teams for development and testing/validation/verification.

Model based development (=> C code is generated).

Expects:

a simple, automatic setup procedure,

 that the analysis runs fast and scales to complex systems,

 that results are reliable, precise and easy to understand.

A static analysis tool must save time and money!

6

Consequences for Integrating AstréeA

1. Simplification of the setup procedure.

2. User friendlier display of new results like data races.

3. Tuning of performance and precision to typical user
codes.

7

Concurrent Analysis Setup

8

 AstréeA was built
around abstract OS
models.

 OS models are shipped
with the product and
integrated with the
preprocessing phase.

 OS models have been
extended to report
invalid usages of OS
services.

 Simplified setup for
OSEK by evaluation of
OIL files.

Data Races vs. “Classic” RTEs

 “Classic” run-time error:

Detected in a single code location in multiple analysis contexts.

Aggregating analyzer findings per code location results in a
relatively small number of places that the user has to check.

Data race:

Detected in many code locations.

Which of these code locations access the same variable?

Which parallel processes are involved?

9

Displaying Data Races
 Aggregate findings about data races per memory location.

 Show involved functions
in the call tree.

10

RESULTS AND FEEDBACK

11

Example Automotive Projects

 Development versions of 2 projects with known issues:

 Automotive 1 (Auto_1)

Partial OSEK project, configured by .OIL file

3 application components,

1 handwritten application component (control)

2 application components generated by TargetLink (logic and control)

2 tasks

 Automotive 2 (Auto_2)

Complete AUTOSAR 3.2. project, including entire ECU code and
AUTOSAR stack except NvM and CAN. Configured by .OIL file.

Application code mostly generated by TargetLink with some
handwritten parts (e.g. CDD)

11 tasks, 13 ISRs, 2 counters and 9 alarms

12

All 6 findings about data races in Auto_1 were justified.

Lots of false alarms in Auto_2.

Initial Results

13

Project Auto_1 Auto_2

LOC (preprocessed, without blank/comment lines) 177.576 2.574.481

Selectivitiy (number of lines proven correct) 99.5% 99.9%

Potential Run-time errors 774 702

Number of Shared variables 851 1874

Variables with data races (number/percentage) 6 (0.7%) 1481 (79%)

Data flow anomalies (infinite loops) 2 3

Reached code 78% 64%

Max RAM 2.6 GB 28.4 GB

Analysis time 30 m 1d 10h 8m

General User Feedback

Analysis works very well for smaller and medium sized
codes.

Higher analysis times on large codes (compared to
sequential analysis) can be problematic.

Users also asked for

Deadlock detection (new in next release 16.10).

OS model for POSIX threads (not yet available in the product).

Precision improvements for software running on OSEK/AUTOSAR
(see next section).

14

CHALLENGES AND
IMPROVEMENTS

15

OSEK / AUTOSAR

Priority Ceiling Protocol (PCP).

Tasks dynamically change their priorities.

Original implementation was sound but imprecise.

Precise priorities are available with new release 16.10.

 Implicit Global Locking.

Use of [Suspend|Resume][All|OS]Interrupts functions as main
synchronization primitives instead of explicit mutex locks.

 SuspendAllInterrupts();

 /* write to shared variables */

 ResumeAllInterrupts();

Original implementation assumed impossible interactions.

16

Initializations in Concurrent Phase

Additional initializations precede periodic tasks.

Problem: Exclude impossible data races between
initialization and periodic phase.

17

t

seq.
init

Init 1

Task
1

Init 2

 Task
3

Init 3

Task
5

 Task
2

Task
4

No data races

possible

Example: Auto_2

The improved analysis uses

More precise handling of dynamic priorities.

More precise handling of [Suspend|Resume][All|OS]Interrupts.

Separation of initialization and periodic phase. [Development feature]

 Improvements for analyzing AUTOSAR libraries.

Current Situation

18

Project original improved

LOC (preprocessed, without blank/comment lines) 2.574.481 2.574.481

Variables with data races (number/percentage) 1481 (79%) 205 (10.9%)

Reached code 64% 72%

Max RAM 28.4 GB 23.3 GB

Analysis time 1d 10h 8m 14h 24m

Lock-Free Implementations

Example:

 No locking is required if all accesses to max_valid and buffer entries
are atomic operations.

 Notion of atomic memory accesses has been added to the analyzer.

 Specified per type in the ABI settings.

 Option: no data race alarms for unprotected accesses to volatile
shared variables if all accesses are atomic.

Process 1

1. append data to
buffer

2. increase max_valid
buffer index

19

Process 2

read buffer entries up to
max_valid index

The Future: Big Multicore Systems

Example automotive setup:

An application is a collection of tasks.

Applications are mapped to cores.
Usually one application per core.

Each core has its own scheduler and OS.

Shared memory between cores.

Applications are synchronized by spinlocks.

A task on core 1 can “access” application on core 2.
Event set in task on core 1, received by application on core 2.

Task chaining between applications on different cores using events
or spinlocks.

20

Conclusion

The majority of safety critical software is concurrent.

Concurrent software is nowadays successfully analyzed by
industrial users of Astrée.

We are continuously working on improving precision and
performance in relevant use cases.

We expect the automatic sound analysis of concurrent
software to become more and more common in the
relevant industries.

21

22

email: info@absint.com

http://www.absint.com

Thank you!

