
AstréeA

From Research To Industry

 Dr.-Ing. Stephan Wilhelm, AbsInt GmbH

Workshop on Static Analysis of Concurrent Software

Edinburgh, 2016

2

AbsInt Angewandte Informatik GmbH
 Provides advanced development tools for embedded systems and

tools for validation, verification, and certification of safety-critical
software.

 Founded in February 1998 by six researchers of Saarland
University, Germany, from the group of programming languages
and compiler construction of Prof. Dr. Dr. h.c. mult. R. Wilhelm.

 Privately held by the founders.

 Headquarters in Saarbrücken, Germany.

 Our customers come from all industry sectors
where safety-relevant software is used:
 Aerospace & defense

 Automotive

 Nuclear & wind energy

 Railway control

 Medical devices

Astrée for C

Sound static analysis based on
abstract interpretation to prove
absence of runtime errors.

Astrée detects:
 Array index out of bounds

 Int/float division by 0

 Invalid pointer dereferences

 Arithmetic overflows and wrap-arounds

 Floating point overflows and invalid operations (Inf and NaN)

 Uninitialized variables

 Data races, inconsistent locking

 + Floating-point rounding errors taken into account

 + User-defined assertions, unreachable code, non-terminating loops

 + Supports MISRA, CERT, CWE

3

AstréeA

ASTRÉE(A) Timeline

4

Practical Use

Various industries
…

2001 2016 2009

ASTRÉE

ENS Paris

ASTRÉEA

ENS Paris

Astrée for C

AbsInt

15.10

AbsInt

Subjects

of this talk

PRODUCT INTEGRATION

5

The Average Industrial User

 Is not an expert C programmer or computer scientist!

Often has a background in testing and doesn’t know the software
under analysis.

Separate teams for development and testing/validation/verification.

Model based development (=> C code is generated).

Expects:

a simple, automatic setup procedure,

 that the analysis runs fast and scales to complex systems,

 that results are reliable, precise and easy to understand.

A static analysis tool must save time and money!

6

Consequences for Integrating AstréeA

1. Simplification of the setup procedure.

2. User friendlier display of new results like data races.

3. Tuning of performance and precision to typical user
codes.

7

Concurrent Analysis Setup

8

 AstréeA was built
around abstract OS
models.

 OS models are shipped
with the product and
integrated with the
preprocessing phase.

 OS models have been
extended to report
invalid usages of OS
services.

 Simplified setup for
OSEK by evaluation of
OIL files.

Data Races vs. “Classic” RTEs

 “Classic” run-time error:

Detected in a single code location in multiple analysis contexts.

Aggregating analyzer findings per code location results in a
relatively small number of places that the user has to check.

Data race:

Detected in many code locations.

Which of these code locations access the same variable?

Which parallel processes are involved?

9

Displaying Data Races
 Aggregate findings about data races per memory location.

 Show involved functions
in the call tree.

10

RESULTS AND FEEDBACK

11

Example Automotive Projects

 Development versions of 2 projects with known issues:

 Automotive 1 (Auto_1)

Partial OSEK project, configured by .OIL file

3 application components,

1 handwritten application component (control)

2 application components generated by TargetLink (logic and control)

2 tasks

 Automotive 2 (Auto_2)

Complete AUTOSAR 3.2. project, including entire ECU code and
AUTOSAR stack except NvM and CAN. Configured by .OIL file.

Application code mostly generated by TargetLink with some
handwritten parts (e.g. CDD)

11 tasks, 13 ISRs, 2 counters and 9 alarms

12

All 6 findings about data races in Auto_1 were justified.

Lots of false alarms in Auto_2.

Initial Results

13

Project Auto_1 Auto_2

LOC (preprocessed, without blank/comment lines) 177.576 2.574.481

Selectivitiy (number of lines proven correct) 99.5% 99.9%

Potential Run-time errors 774 702

Number of Shared variables 851 1874

Variables with data races (number/percentage) 6 (0.7%) 1481 (79%)

Data flow anomalies (infinite loops) 2 3

Reached code 78% 64%

Max RAM 2.6 GB 28.4 GB

Analysis time 30 m 1d 10h 8m

General User Feedback

Analysis works very well for smaller and medium sized
codes.

Higher analysis times on large codes (compared to
sequential analysis) can be problematic.

Users also asked for

Deadlock detection (new in next release 16.10).

OS model for POSIX threads (not yet available in the product).

Precision improvements for software running on OSEK/AUTOSAR
(see next section).

14

CHALLENGES AND
IMPROVEMENTS

15

OSEK / AUTOSAR

Priority Ceiling Protocol (PCP).

Tasks dynamically change their priorities.

Original implementation was sound but imprecise.

Precise priorities are available with new release 16.10.

 Implicit Global Locking.

Use of [Suspend|Resume][All|OS]Interrupts functions as main
synchronization primitives instead of explicit mutex locks.

 SuspendAllInterrupts();

 /* write to shared variables */

 ResumeAllInterrupts();

Original implementation assumed impossible interactions.

16

Initializations in Concurrent Phase

Additional initializations precede periodic tasks.

Problem: Exclude impossible data races between
initialization and periodic phase.

17

t

seq.
init

Init 1

Task
1

Init 2

 Task
3

Init 3

Task
5

 Task
2

Task
4

No data races

possible

Example: Auto_2

The improved analysis uses

More precise handling of dynamic priorities.

More precise handling of [Suspend|Resume][All|OS]Interrupts.

Separation of initialization and periodic phase. [Development feature]

 Improvements for analyzing AUTOSAR libraries.

Current Situation

18

Project original improved

LOC (preprocessed, without blank/comment lines) 2.574.481 2.574.481

Variables with data races (number/percentage) 1481 (79%) 205 (10.9%)

Reached code 64% 72%

Max RAM 28.4 GB 23.3 GB

Analysis time 1d 10h 8m 14h 24m

Lock-Free Implementations

Example:

 No locking is required if all accesses to max_valid and buffer entries
are atomic operations.

 Notion of atomic memory accesses has been added to the analyzer.

 Specified per type in the ABI settings.

 Option: no data race alarms for unprotected accesses to volatile
shared variables if all accesses are atomic.

Process 1

1. append data to
buffer

2. increase max_valid
buffer index

19

Process 2

read buffer entries up to
max_valid index

The Future: Big Multicore Systems

Example automotive setup:

An application is a collection of tasks.

Applications are mapped to cores.
Usually one application per core.

Each core has its own scheduler and OS.

Shared memory between cores.

Applications are synchronized by spinlocks.

A task on core 1 can “access” application on core 2.
Event set in task on core 1, received by application on core 2.

Task chaining between applications on different cores using events
or spinlocks.

20

Conclusion

The majority of safety critical software is concurrent.

Concurrent software is nowadays successfully analyzed by
industrial users of Astrée.

We are continuously working on improving precision and
performance in relevant use cases.

We expect the automatic sound analysis of concurrent
software to become more and more common in the
relevant industries.

21

22

email: info@absint.com

http://www.absint.com

Thank you!

