AstréeA
From Research To Industry

—_—
-
' Dr.-Ing. Stephan Wilhelm, AbsInt GmbH

Workshop on Static Analysis of Concurrent Software
Edinburgh, 2016

. = .

AbsInt Angewandte Informatik GmbH

Provides advanced development tools for embedded systems and
tools for validation, verification, and certification of safety-critical
software.

Founded in February 1998 by six researchers of Saarland
University, Germany, from the group of programming languages
and compiler construction of Prof. Dr. Dr. h.c. mult. R. Wilhelm.

Privately held by the founders. o~
Headquarters in Saarbriicken, Germany. W~

. London' Nethe ' d Poland
Our customers come from all industry sectors 3 o ol

"o

H 7Y Absint An< ewandte A

where safety-relevant software is used: o Db s
Aerospace & defense France 7,\,%*3;2\ /
Automotive v BER >
S IIttally \'j?%ﬂ

Nuclear & wind energy
Railway control
Medical devices

€l Absint

Astree for C

Sound static analysis based on == L oL L
abstract interpretation to prove :
absence of runtime errors.

Astrée detects:

Array index out of bounds
Int/float division by 0
Invalid pointer dereferences
Arithmetic overflows and wrap-arounds
Floating point overflows and invalid operations (Inf and NaN)
Uninitialized variables)

[Data races, inconsistent Iocking]</ AstreeA
+ Floating-point rounding errors taken into account
+ User-defined assertions, unreachable code, non-terminating loops
+ Supports MISRA, CERT, CWE

€l Absint

ASTREE(A) Timeline
ASTREE>> >> ASTREEA >
ENS Paris ENS Paris
Subjects
\ of this talk

R Astrée for C 15. 10
AbsInt AbsInt

Practlcal Use

Various industries

2001 2009 2016

€l Absint

PRODUCT INTEGRATION

€l Absint

@
The Average Industrial User

Is not an expert C programmer or computer scientist!

Often has a background in testing and doesn’t know the software
under analysis.

Separate teams for development and testing/validation/verification.
Model based development (=> C code is generated).

Expects:
a simple, automatic setup procedure,

that the analysis runs fast and scales to complex systems,
that results are reliable, precise and easy to understand.

A static analysis tool must save time and money!

€l Absint

o
Consequences for Integrating AstréeA

. Simplification of the setup procedure.
. User friendlier display of new results like data races.

. Tuning of performance and precision to typical user
codes.

€l Absint

Concurrent Analysis Setup

V| Use the built-in preprocessor
Operating system: | OSEK v
O1L file: C:/Program FilesfAbsInt/Astree Analyzer/c/b268453/share/examples/osek/config.oil

Include paths: -

==
Output directory: |C:/Users/Stephan/AppData/Local/Temp/astreetmpP1Xk0A/osek —
v | Generate analysis wrapper
Sources
Insert files for preprocessing:
v s~ OSEK == Base directory:)
o sk stub C Include paths:
" Default configuration [
C example.c -
)
-— s

Preprocess

v Errors

Processing of C:/Program Files/ AbsInt/ Astree Analyzer/c/b268453/share/examples/osek/config.oil started at 13:34:04...
C:/Program Files/AbsInt/Astree Analyzer/c/b268453/bin/astree-oil.exe -o C:/Users/Stephan/AppData/Local/Temp/astreetmpP1xk0Afosek C:/Program
Files/AbsInt/Astree Analyzer/c/b268453/share/examples/osek/config.oil

Processing of C:/Program Files/ AbsInt/ Astree Analyzer/c/b268453/share/os/0SEK/src/osek_stub.c started at 13:34:04...
C:/Program Files/AbsInt/Astree Analyzer/c/b268453/bin/clang.exe -xc -E -nostdinc -undef -target x86_64-unknown-linux-gnu -CC -IC:/Program Files/
AbsInt/Astree Analyzer/c/b268453/share/os/0SEK/include -IC:/Users/Stephan/AppData/Local/Temp/astreetmpP1xXk0A/osek -0 C:/Users/Stephan/
AppData/Local/Temp/astreetmpP1XkOA/preprocessed/astree_internal/os/OSEK/srcfosek_stub.c C:/Program Files/AbsInt/Astree Analyzer/c/b268453/
share/os/0SEK/src/osek_stub.c

Processing of src/example.c started at 13:34:05...

C:/Program Files/AbsInt/Astree Analyzer/c/b268453/bin/clang.exe -xc -E -nostdinc -undef -target x86_64-unknown-linux-gnu -CC -IC:/Program Files/
AbsInt/Astree Analyzer/c/b268453/share/os/0SEK/include -IC:/Users/Stephan/AppData/Local/Temp/astreetmpP1Xk0A/osek -0 C:/Users/Stephan/
AppData/Local/Temp/astreetmpP1XkOA/preprocessed/src/example.c srcf/example.c

AstréeA was built
around abstract OS
models.

OS models are shipped
with the product and
integrated with the
preprocessing phase.

OS models have been
extended to report
invalid usages of OS
services.

Simplified setup for
OSEK by evaluation of
OIL files.

€l Absint

)
Data Races vs. “Classic” RTEs

“Classic” run-time error:
Detected in a single code location in multiple analysis contexts.

Aggregating analyzer findings per code location results in a
relatively small number of places that the user has to check.

Data race:
Detected in many code locations.
Which of these code locations access the same variable?
Which parallel processes are involved?

€l Absint

Displaying Data Races

—————— 10

Aggregate findings about data races per memory location.

Findings/C Findings/F Rule violations Reachability

Variables involved in data races

- g datarace shared variable Process 0: Taskl

1 of 9 variables are involed in data races

Filter:

@ Data flow filtered in Result View

Variable Function Access
g TASK Task? read
P g TASK Task? write
g TASK Task1 read
P g TASK Task1 write

Process

Process 1: TaskZ2
Process 1: Task2
Process 0: Task1
Process (: Task1

© Messages filtered in Result view (Data races for variable 'g")

Order Type Category
1 P' Alarm (B) Read/write data race

2 P“ Alarm (B) Write/write data race
3 P‘ Alarm (B) Read/write data race

4 P‘ Alarm (B) Read/write data race

Location

example.c465.6-7
example.c:465.14-15
example.c:465.14-15

example.c:466.6-7

Metrics Data flow Filter

= | AlarmExec (Process 2: Alarm1) 0/0 +3 —(+)

ARSI [Taskexec (Process 0: Task1) 0/ ————{_TASK Taski 1/1 }—(*)

| TaskExec (Process 1: Task2) 0/2 ’—{ TASK _Task2 2/2 }_®

| AlarmExec (Process 3: Alarm2) —(+)

Filter:
,,,,,,,,,,,,,,,,,,, [__astree_main__ (main-process) @
Data races Shared variable . .
e e Show involved functions
yes ye in the call tree.

Classification Comment

ALARM (B): read-write data-race in expression 4 byte(s) at [g@0]
ALARM (B): write-write data-race in assignment 4 byte(s) at [g@0]
ALARM (B): read-write data-race in expression 4 byte(s) at [g@0]

ALARM (B): read-write data-race in memcpy 4 byte(s) at [g@0]

ﬁ Absint

11

RESULTS AND FEEDBACK

€l Absint

PS 12
Example Automotive Projects

Development versions of 2 projects with known issues:
Automotive 1 (Auto_1)

Partial OSEK project, configured by .OIL file

3 application components,

1 handwritten application component (control)

2 application components generated by TargetLink (logic and control)
2 tasks

Automotive 2 (Auto_2)

Complete AUTOSAR 3.2. project, including entire ECU code and
AUTOSAR stack except NvM and CAN. Configured by .OIL file.

Application code mostly generated by TargetLink with some
handwritten parts (e.g. CDD)

11 tasks, 13 ISRs, 2 counters and 9 alarms

€l Absint

Initial Results

13

LOC (preprocessed, without blank/comment lines) 177.576

Selectivitiy (number of lines proven correct) 99.5%
Potential Run-time errors 774
Number of Shared variables 851
Variables with data races (number/percentage) 6 (0.7%)
Data flow anomalies (infinite loops) 2
Reached code 78%
Max RAM 2.6 GB
Analysis time 30 m

2.574.481
99.9%

702

1874

1481 (79%)
3

64%

28.4 GB

1d 10h 8m

All 6 findings about data races in Auto_1 were justified.

Lots of false alarms in Auto_2.

€l Absint

14

General User Feedback

Analysis works very well for smaller and medium sized
codes.

Higher analysis times on large codes (compared to
sequential analysis) can be problematic.

Users also asked for
Deadlock detection (new in next release 16.10).
OS model for POSIX threads (not yet available in the product).

Precision improvements for software running on OSEK/AUTOSAR
(see next section).

€l Absint

CHALLENGES AND
IMPROVEMENTS

15

€l Absint

16

OSEK / AUTOSAR

Priority Ceiling Protocol (PCP).
Tasks dynamically change their priorities.
Original implementation was sound but imprecise.
Precise priorities are available with new release 16.10.

Implicit Global Locking.

Use of [Suspend|Resume][All|OS]Interrupts functions as main
synchronization primitives instead of explicit mutex locks.

SuspendAllinterrjts
[* write to shared variables */
ResumeAllinterruyjpts

Original implementation assumed impossible interactions.

€l Absint

———— S 17
P . —
Initializations in Concurrent Phase

Additional initializations precede periodic tasks.

Problem: Exclude impossible data races between
initialization and periodic phase.

t

Task Task Task Task Task
1 2 3 4 5

No data races
possible

ﬁ Absint

Current Situation

Example: Auto_2

18

LOC (preprocessed, without blank/comment lines) 2.574.481

Variables with data races (number/percentage) 1481 (79%)
Reached code 64%
Max RAM 28.4 GB
Analysis time 1d 10h 8m

The improved analysis uses
More precise handling of dynamic priorities.

2.574.481
205 (10.9%)
72%

23.3 GB

14h 24m

More precise handling of [Suspend|Resume][All|OS]Interrupts.
Separation of initialization and periodic phase. [Development feature]

Improvements for analyzing AUTOSAR libraries.

€l Absint

19

@
Lock-Free Implementations

Example:
Process 1 Process 2
1. append data to read buffer entries up to
buffer max_valid index

2. increase max_valid
buffer index

No locking is required if all accesses to max_valid and buffer entries
are atomic operations.

Notion of atomic memory accesses has been added to the analyzer.
Specified per type in the ABI settings.

Option: no data race alarms for unprotected accesses to volatile
shared variables if all accesses are atomic.

€l Absint

20

The Future: Big Multicore Systems

Example automotive setup:
An application is a collection of tasks.

Applications are mapped to cores.
Usually one application per core.

Each core has its own scheduler and OS.
Shared memory between cores.
Applications are synchronized by spinlocks.

A task on core 1 can “access” application on core 2.
Event set in task on core 1, received by application on core 2.

Task chaining between applications on different cores using events
or spinlocks.

€l Absint

21

Conclusion

The majority of safety critical software is concurrent.

Concurrent software is nowadays successfully analyzed by
industrial users of Astree.

We are continuously working on improving precision and
performance in relevant use cases.

We expect the automatic sound analysis of concurrent
software to become more and more common in the
relevant industries.

€l Absint

Absint

Thank you!

email: info@absint.com
http://www.absint.com

